Photocatalytic Degradation of Organic Pollutants: Mechanisms and Kinetics
نویسندگان
چکیده
A wide variety of organic pollutants are introduced into the water system from various sources such as industrial effluents, agricultural runoff and chemical spills (Muszkat et al., 1994; Cohen et al., 1986). Their toxicity, stability to natural decomposition and persistence in the environment has been the cause of much concern to the societies and regulation authorities around the world (Dowd et al., 1998). Development of appropriate methods for the degradation of contaminated drinking, ground, surface waters, wastewaters containing toxic or nonbiodegradable compounds is necessary. Among many processes proposed and/or being developed for the destruction of the organic contaminants, biodegradation has received the greatest attention. However, many organic chemicals, especially which are toxic or refractory, are not amendable to microbial degradation. Researcher showed their interest and started the intensive studies on heterogeneous photocatalysis, after the discovery of the photo-induced splitting of water on TiO2 electrodes (Fujishima and Honda, 1972). Semiconductor particles have been found to act as heterogeneous photocatalysts in a number of environmentally important reactions (Blake, 2001; Pirkanniemi, & Sillanpää, 2002; Gaya & Abdullah, 2008). Materials such as colloidal TiO2 and CdS have been found to be efficient in laboratory-scale pollution abatement systems (Barni et al., 1995; Bellobono et al., 1994; Legrini et al., 1993; Mills & Hunte, 1997; Halmann, 1996), reducing both organic [e.g. halogenocarbons (Gupta & Tanaka, 1995; Martin et al., 1994; Read et al., 1996;), benzene derivatives (Blanco et al., 1996; Mao et al., 1996) detergents (Rao & Dube, 1996), PCB’s (Huang et al., 1996), pesticides (Gianturco et al., 1997; Minero et al., 1996; Lobedank et al., 1997; Haque & Muneer 2003; Muneer & Bahnemann, 2002), explosives (Schmelling et al., 1996), dyes (Vinodgopal et al., 1996), cyanobacterial toxins (Liu et al., 2002)] and inorganic [e.g. N2 (Ranjit et al., 1996), NO3and NO2(Mills et al., 1994; Ranjit et al., 1995; Kosanic & Topalov, 1990; Pollema et al., 1992), cyanides (Mihaylov et al., 1993; Frank & Bard 1977), thiocyanates (Draper & Fox, 1990), cyanates (Bravo et al., 1994), bromates (Mills et al., 1996) etc.] pollutants/impurities to harmless species. Semiconductor photocatalysts have been shown to be useful as carbon dioxide (Irvine et al., 1990) and nitrogen (Khan & Rao, 1991) fixatives and for the decomposition of O3 (Ohtani et al., 1992), destruction of microorganisms such as bacteria (Matsunaga & Okochi, 1995; Zhang et al., 1994; Dunlop et al.,
منابع مشابه
Study nanostructures of semiconductor zinc oxide (ZnO) as a photocatalyst for the degradation of organic pollutants
In the present study, comparison of photocatalytic activity of nanostructures semiconductor zinc oxide (ZnO) was prepared using the different methods on the degradation of organic dye such as methylene blue that was investigated. Previous studies have proved that such semiconductors can degrade most kinds of persistent organic pollutants, such as detergents, dyes, pesticides and volatile organ...
متن کاملPhotocatalytic Degradation of Ciprofloxacin pharmacy pollutant in Batch Photoreactor
Background & Aims of the Study: Pharmaceutical compounds have a variety of forms and applications. Specific amounts of toxic organic compounds in the process of their manufacturing and utilization cause environmental pollution problems. So, degradation and removal these compounds are necessary. The aim of this paper is the study photocatalytic degradation of ciprofloxacin drug in aqueous soluti...
متن کاملStudy nanostructures of semiconductor zinc oxide (ZnO) as a photocatalyst for the degradation of organic pollutants
In the present study, comparison of photocatalytic activity of nanostructures semiconductor zinc oxide (ZnO) was prepared using the different methods on the degradation of organic dye such as methylene blue that was investigated. Previous studies have proved that such semiconductors can degrade most kinds of persistent organic pollutants, such as detergents, dyes, pesticides and volatile organ...
متن کاملDegradation and removal of organic pollutants by BaFe2O4 nanostructures, synthesis and characterization
BaFe2O4 nanostructures have been synthesized through a simple sonochemical reduction approach. X-ray diffraction characterization suggested that the product consists of cubic phase pure BaFe2O4. The as-prepared products were also characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). An X-ray energy dispersive spectroscopy (EDX) study further confirmed t...
متن کاملTheoretical investigation on the adsorption configuration and •OH-initiated photocatalytic degradation mechanism of typical atmospheric VOCs styrene onto (TiO2)n clusters
In this study, the adsorption mechanism and hydroxyl radical ((•)OH)-initiated photocatalytic degradation mechanism of styrene onto different (TiO2)n clusters were investigated using density functional theory. Styrene, a typical model atmospheric volatile organic compound (VOC), was found to be readily adsorbed onto (TiO2)n clusters through its vinyl group with strong chemisorption. This sugges...
متن کاملDegradation and removal of organic pollutants by BaFe2O4 nanostructures, synthesis and characterization
BaFe2O4 nanostructures have been synthesized through a simple sonochemical reduction approach. X-ray diffraction characterization suggested that the product consists of cubic phase pure BaFe2O4. The as-prepared products were also characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). An X-ray energy dispersive spectroscopy (EDX) study further confirmed t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012